A $P$-version of the collocation method for solving the Fredholm integral equations of the second kind in the Mathematica environment

Authors

  • V.P. Shapeev S.A. Khristianovich Institute of Theoretical and Applied Mechanics of SB RAS https://orcid.org/0000-0001-6761-7273
  • E.V. Vorozhtsov S.A. Khristianovich Institute of Theoretical and Applied Mechanics of SB RAS

DOI:

https://doi.org/10.26089/NumMet.v20r101

Keywords:

Fredholm integral equation of the second kind, collocation method, condition number, Gauss quadrature

Abstract

A p-version of the collocation method for the numerical solution of Fredholm integral equations of the second kind is proposed and implemented. In the considered implementation, the possibilities are realized for the variation of the polynomial degree in the polynomial representation of the approximate solution of equations and the variation of the number of nodes of the employed Gauss quadrature formula to affect the solution accuracy. The influence of the number of collocation points used for the solution approximation and of the number of nodes of the Gauss quadrature formula on the condition number of the system of linear algebraic equations to the solution of which the construction of the approximate solution is reduced and on its accuracy are studied by the numerical solution of examples, including some examples presented in well-known publications. The proposed algorithm is implemented in the language of the program package Mathematica. In all considered examples, the proposed version of the collocation method has enabled us to reach the accuracy of the solution of equations, which is close to the level of the machine rounding errors. The program product implementing the proposed p-version has proved to be compact and the method turned out to be economical: the machine time required for the solution of problems considered in the paper did not exceed 3 seconds of the CPU time of a personal computer. We describe an algorithm allowing us to estimate the accuracy of the approximate solution obtained by the proposed p-version of the method in the cases where the exact solution of the integral equation is unknown.

Author Biographies

V.P. Shapeev

E.V. Vorozhtsov

References

  1. J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics (Springer, Berlin, 2002).
  2. U. van Rienen, Numerical Methods in Computational Electrodynamics (Springer, Berlin, 2013).
  3. A. B. Samokhin, Volume Integral equations: Methods and Algorithms (Moscow Inst. Radio Eng., Moscow, 2011) [in Russian].
  4. A. N. Tikhonov, V. Ya. Arsenin, and A. A. Timonov, Mathematical Problems of Computer Tomography (Nauka, Moscow, 1987) [in Russian].
  5. M. M. Lavrentiev, A. V. Avdeev, M. M. Lavrentiev, Jr., and V. I. Priimenko, Inverse Problems of Mathematical Physics (VSP Publ., Utrecht, 2003).
  6. M. Zaslavsky, V. Druskin, S. Davydycheva, et al., “Hybrid Finite-Difference Integral Equation Solver for 3D Frequency Domain Anisotropic Electromagnetic Problems,” Geophysics 76 (2), F123-F137 (2011).
  7. W. K. Pratt, Digital Image Processing (Wiley-Interscience, New York, 2001).
  8. A. F. Verlan’ and V. S. Sizikov, Integral Equations: Methods, Algorithms, Programs (Naukova Dumka, Kiev, 1986) [in Russian].
  9. R. D. Russell and L. F. Shampine, “A Collocation Method for Boundary Value Problems,” Numer. Math. 19 (1), 1-28 (1972).
  10. U. M. Ascher, R. M. M. Mattheij, and R. D. Russell, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations (SIAM Press, Philadelphia, 1995).
  11. U. Ascher, J. Christiansen, and R. D. Russell, “Collocation Software for Boundary-Value ODEs,” ACM Trans. Math. Software. 7 (2), 209-222 (1981).
  12. V. Shapeev, “Collocation and Least Residuals Method and Its Applications,” EPJ Web of Conferences 108 (2016).
    doi 10.1051/epjconf/201610801009
  13. V. I. Isaev and V. P. Shapeev, “High-Accuracy Versions of the Collocations and Least Squares Method for the Numerical Solution of the Navier-Stokes Equations,” Zh. Vychisl. Mat. Mat. Fiz. 50 (10), 1758-1770 (2010) [Comput. Math. Math. Phys. 50 (10), 1670-1681 (2010)].
  14. V. P. Shapeev, E. V. Vorozhtsov, V. I. Isaev, and S. V. Idimeshev, “The Method of Collocations and Least Residuals for Three-Dimensional Navier-Stokes Equations,” Vychisl. Metody Programm. 14, 306-322 (2013).
  15. E. V. Vorozhtsov and V. P. Shapeev, “On Combining the Techniques for Convergence Acceleration of Iteration Processes during the Numerical Solution of Navier-Stokes Equations,” Vychisl. Metody Programm. 18, 80-102 (2017).
  16. D. Kharenko, C. Padovani, A. Pagni, et al., “Free Longitudinal Vibrations of Bimodular Beams: A Comparative Study,” Int. J. Str. Stab. Dyn. 11 (1), 23-56 (2011).
  17. S. Wolfram, The Mathematica Book (Wolfram Media, Champaign, 2003).
  18. P. Knupp and K. Salari, Verification of Computer Codes in Computational Science and Engineering (CRC Press, Boca Raton, 2002).
  19. P. J. Roache, “Code Verification by the Method of Manufactured Solutions,” J. Fluids Eng. 124 (1), 4-10 (2002).
  20. I. B. Petrov and A. I. Lobanov, Lectures on Computational Mathematics (Binom, Moscow, 2006) [in Russian].

Published

18-01-2019

How to Cite

Шапеев В., Ворожцов Е. A $P$-Version of the Collocation Method for Solving the Fredholm Integral Equations of the Second Kind in the Mathematica Environment // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2019. 20. 1-11. doi 10.26089/NumMet.v20r101

Issue

Section

Section 1. Numerical methods and applications

Most read articles by the same author(s)