A method of adaptive artificial viscosity for solving numerically the equations of a viscous heat-conducting compressible gas

Authors

  • D.V. Ivanov Korotkov Scientific-Production Enterprise «Temp»
  • G.M. Kobelkov Lomonosov Moscow State University
  • M.A. Lozhnikov Lomonosov Moscow State University https://orcid.org/0000-0002-8727-0091
  • A.F. Kharisov Korotkov Scientific-Production Enterprise «Temp»

DOI:

https://doi.org/10.26089/NumMet.v19r105

Keywords:

numerical simulation, gas dynamics, unstructured meshes, artificial viscosity

Abstract

This paper is devoted to the numerical solution of the dynamics equations for a viscous heat-conducting compressible gas by the method of adaptive viscosity on unstructured tetrahedral meshes. A combination of the MacCormack method and the Lax-Wendroff method allows one to monotonize the difference scheme using the method of frozen coefficients. The numerical results are in good agreement with experimental data.

Author Biographies

D.V. Ivanov

G.M. Kobelkov

M.A. Lozhnikov

A.F. Kharisov

References

  1. I. V. Popov and I. V. Fryazinov, “Finite-Difference Method for Solving Gas Dynamics Equations Using Adaptive Artificial Viscosity,” Mat. Model. 20 (8), 48-60 (2008) [Math. Models Comput. Simul. 1 (4), 493-502 (2009)].
  2. I. V. Popov and I. V. Fryazinov, “Adaptive Artificial Viscosity for Multidimensional Gas Dynamics for Euler Variables in Cartesian Coordinates,” Mat. Model. 22 (1), 32-45 (2010) [Math. Models Comput. Simul. 2 (4), 429-442 (2010)].
  3. I. V. Popov and I. V. Fryazinov, “Calculations of Two-Dimensional Test Problems by the Method of Adaptive Viscosity,” Mat. Model. 22 (5), 57-66 (2010) [Math. Models Comput. Simul. 2 (6), 724-732 (2010)].
  4. I. V. Popov and I. V. Fryazinov, “A Method of Adaptive Artificial Viscosity,” Mat. Model. 22 (7), 121-128 (2010) [Math. Models Comput. Simul. 3 (1), 18-24 (2011)].
  5. I. V. Popov and I. V. Fryazinov, “On the New Choice of Adaptive Artificial Viscosity,” Mat. Model. 22 (12), 23-32 (2010) [Math. Models Comput. Simul. 3 (4), 411-418 (2011)].
  6. I. V. Popov and I. V. Fryazinov, “Finite-Difference Method for Computation of 3-D Gas Dynamics Equations with Artificial Viscosity,” Mat. Model. 23 (3), 89-100 (2011) [Math. Models Comput. Simul. 3 (5), 587-595 (2011)].
  7. I. V. Popov and I. V. Fryazinov, “Method of Adaptive Artificial Viscosity for Gas Dynamics Equations on Triangular and Tetrahedral Grids,” Mat. Model. 24 (6), 109-127 (2012) [Math. Models Comput. Simul. 5 (1), 50-62 (2013)].
  8. A. A. Samarskii, A. V. Koldoba, Yu. A. Poveshchenko, et al., Difference Schemes on Irregular Grids (Kriterii, Minsk, 1996) [in Russian].
  9. A. A. Samarskii and Yu. P. Popov, Difference Schemes for Solving Gas Dynamics Problems (Nauka, Moscow, 1992) [in Russian].
  10. T. G. Elizarova, Quasi-Gas-Dynamic Equations and Methods of Calculation of Viscous Flows (Nauchnyi Mir, Moscow, 2007) [in Russian].
  11. P. Lax and B. Wendroff, “Systems of Conservation Laws,” Commun. Pure Appl. Math. 13 (2), 217-237 (1960).
  12. R. W. MacCormack, “The Effect of Viscosity in Hypervelocity Impact Cratering,” AIAA Paper No. 69-354 (1969).
  13. C. Geuzaine and J.-F. Remacle, “Gmsh: A Three-Dimensional Finite Element Mesh Generator with Built-in Pre- and Post-Processing Facilities,” Int. J. Numer. Meth. Eng. 79 (11), 1309-1331 (2009).

Published

11-02-2018

How to Cite

Иванов Д., Кобельков Г., Ложников М., Харисов А. A Method of Adaptive Artificial Viscosity for Solving Numerically the Equations of a Viscous Heat-Conducting Compressible Gas // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2018. 19. 51-62. doi 10.26089/NumMet.v19r105

Issue

Section

Section 1. Numerical methods and applications