Supercomputer multiscale modeling of gas mixture flows in microchannels

Authors

DOI:

https://doi.org/10.26089/NumMet.v19r104

Keywords:

multiscale modeling, gas mixture flow, microchannels, parallel algorithms, high-performance computing

Abstract

This paper is devoted to the modeling of flows of real gases and their mixtures in microchannels of technical systems using high-performance computing. For modeling, a multiscale two-level approach is used; it combines calculations at macro- and microlevels. The approach makes it possible to study multicomponent flows in microchannels of complex geometry in a wide range of Knudsen numbers. The parallel implementation is based on the domain decomposition method and the functional parallelism and is oriented on the use of computer systems with hybrid architecture. As an example, the problem of outflow of a nitrogen and hydrogen mixture into vacuum is considered. This example is used to study the correctness of the multiscale approach. In addition, the results of direct molecular-dynamics modeling of nitrogen flow in a nickel micronozzle are discussed, including the parallelization performance at a large number of particles (0.5 billion) and the velocity profiles in a micronozzle as a function of time.

Author Biographies

V.O. Podryga

S.V. Polyakov

References

  1. J. O. Hirschfelder, C. F. Curtis, and R. B. Bird, The Molecular Theory of Gases and Liquids (Wiley, New York, 1954).
  2. J. M. Haile, Molecular Dynamics Simulation: Elementary Methods (Wiley, New York, 1992).
  3. V. O. Podryga, “Multiscale Approach to Computation of Three-Dimensional Gas Mixture Flows in Engineering Microchannels,” Dokl. Akad. Nauk 469 (6), 656-658 (2016) [Dokl. Math. 94 (1), 458-460 (2016)].
  4. V. O. Podryga and S. V. Polyakov, “Parallel Implementation of Multiscale Approach to the Numerical Study of Gas Microflows,” Vychisl. Metody Programm. 17, 147-165 (2016).
  5. T. G. Elizarova, Quasi-Gas Dynamic Equations and Methods for the Computation of Viscous Flow (Nauchnyi Mir, Moscow, 2007) [in Russian].
  6. Yu. V. Sheretov, Dynamics of Continuum Media under Spatiotemporal Averaging (Regular and Chaotic Dynamics, Izhevsk, 2009) [in Russian].
  7. T. G. Elizarova, A. A. Zlotnik, and B. N. Chetverushkin, “On Quasi-Gasdynamic and Quasi-Hydrodynamic Equations for Binary Gas Mixtures,” Dokl. Akad. Nauk 459 (4), 395-399 (2014) [Dokl. Math. 90 (3), 719-723 (2014)].
  8. R. Eymard, T. R. Gallouet, and R. Herbin, “The Finite Volume Method,” in Handbook of Numerical Analysis (North Holland, Amsterdam, 2000), Vol. 7, pp. 713-1020.
  9. R. Li, Zh. Chen, and W. Wu, Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods (Marcel Dekker, New York, 2000).
  10. I. V. Popov and I. V. Fryazinov, Adaptive Artificial Viscosity Method for Numerical Solution of Gas Dynamics Equations (Krasand, Moscow, 2015) [in Russian].
  11. W. Gautschi, Numerical Analysis (Birkh854user, New York, 2012).
  12. L. Verlet, “Computer ’Experiments’ on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules,” Phys. Rev. 159, 98-103 (1967).
  13. V. O. Podryga, “Molecular Dynamics Method for Simulation of Thermodynamic Equilibrium,” Mat. Model. 22 (11), 39-48 (2010) [Math. Models Comput. Simul. 3 (3), 382-388 (2011)].
  14. V. O. Podryga, S. V. Polyakov, and D. V. Puzyrkov, “Supercomputer Molecular Modeling of Thermodynamic Equilibrium in Gas-Metal Microsystems,” Vychisl. Metody Programm. 16, 123-138 (2015).
  15. T. A. Kudryashova, V. O. Podryga, and S. V. Polyakov, “Simulation of Gas Mixture Flows in Microchannels,” Vestn. Peoples’ Friendship Univ. Ser. Mat. Inf. Phys., No. 3, 154-163 (2014).
  16. Yu. N. Karamzin, T. A. Kudryashova, V. O. Podryga, and S. V. Polyakov, “Multiscale Simulation of Nonlinear Processes in Technical Microsystems,” Mat. Model. 27 (7), 65-74 (2015).
  17. V. O. Podryga and S. V. Polyakov, Multiscale Modeling of Gas Jet Outflow to Vacuum , Preprint No. 81 (Keldysh Inst. Appl. Math., Moscow, 2016).
  18. A. Ramos, G. Tejeda, J. M. Fernández, and S. Montero, “Nonequilibrium Processes in Supersonic Jets of N_2, H_2, and N_2 + H_2 Mixtures: (I) Zone of Silence,” J. Phys. Chem. A 113, 8506-8512 (2009).

Published

07-02-2018

How to Cite

Подрыга В., Поляков С. Supercomputer Multiscale Modeling of Gas Mixture Flows in Microchannels // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2018. 19. 38-50. doi 10.26089/NumMet.v19r104

Issue

Section

Section 1. Numerical methods and applications