Analysis and optimization of higher order explicit finite-difference schemes for the advection stage implementation in the lattice Boltzmann method

Authors

DOI:

https://doi.org/10.26089/NumMet.v18r321

Keywords:

lattice Boltzmann method, splitting method, stability, dispersion, dissipation

Abstract

This paper is devoted to the analysis and optimization of explicit finite-difference schemes for solving the transport equations arising at the advection stage in the method of splitting into physical processes. The method can be applied to the lattice Boltzmann equations and to the kinetic equations of general type. The second-to-fourth order schemes are considered. In order to minimize the effect of numerical dispersion and dissipation, the parametric schemes are used. The Neumann method and the polynomial approximation of the boundaries of stability domains are employed to obtain the stability conditions in the form of inequalities imposed on the Courant parameter. The optimal values of the parameter used to control the dissipation and dispersion effects are found by minimizing the maximum function. The schemes with optimal parameters are applied for the numerical solution of 1D and 2D advection equations and for the problem of lid-driven cavity flow.

Author Biographies

G.V. Krivovichev

St Petersburg University
• Associate Professor

E.S. Marnopolskaya

References

  1. N. E. Grachev, A. V. Dmitriev, and D. S. Senin, “Simulation of Gas Dynamics with the Lattice Boltzmann Method,” Vychisl. Metody Programm. 12, 227-231 (2011).
  2. A. M. Zakharov, D. S. Senin, and E. A. Grachev, “Flow Simulation by the Lattice Boltzmann Method with Multiple-Relaxation Times,” Vychisl. Metody Programm. 15, 644-657 (2014).
  3. N. M. Evstigneev and N. A. Magnitskii, “Nonlinear Dynamics in the Initial-Boundary Value Problem on the Fluid Flow from a Ledge for the Hydrodynamic Approximation to the Boltzmann Equations,” Differ. Uravn. 46 (12), 1794-1798 (2010) [Differ. Equ. 46 (12), 1794-1798 (2010)].
  4. N. A. Vladimirova, A. I. Prostomolotov, and N. A. Verezub, “Computer Simulation of Aerohydrodynamics Problems on the Base of Numerical Solution of Kinetic Equation by Lattice Boltzmann Method in the XFlow Software Package,” Fiz. Khim. Kinetika Gaz. Dinamika 16 (1), 1-14 (2015).
  5. D. A. Bikulov, D. S. Senin, D. S. Demin, et al., “Implementation of the Lattice Boltzmann Method on GPU Clusters,” Vychisl. Metody Programm. 13, 13-19 (2012).
  6. D. A. Bikulov and D. S. Senin, “Implementation of the Lattice Boltzmann Method without Stored Distribution Functions on GPU,” Vychisl. Metody Programm. 14, 370-374 (2013).
  7. D. A. Bikulov, “An Efficient Implementation of the Lattice Boltzmann Method for Hybrid Supercomputers,” Vychisl. Metody Programm. 16, 205-214 (2015).
  8. A. L. Kupershtokh, “Three-Dimensional Simulations of Two-Phase Liquid-Vapor Systems on GPU Using the Lattice Boltzmann Method,” Vychisl. Metody Programm. 13, 130-138 (2012).
  9. A. L. Kupershtokh, “Three-Dimensional LBE Simulations on Hybrid GPU-Clusters for the Decay of a Binary Mixture of Liquid Dielectrics with a Solute Gas to a System of Gas-Vapor Channels,” Vychisl. Metody Programm. 13, 384-390 (2012).
  10. A. L. Kupershtokh, D. A. Medvedev, and I. I. Gribanov, “Modeling of Thermal Flows in a Medium with Phase Transitions Using the Lattice Boltzmann Method,” Vychisl. Metody Programm. 15 (2), 317-328 (2014).
  11. X. He and L.-S. Luo, “A Priori Derivation of the Lattice Boltzmann Equation,” Phys. Rev. E 55 (6), R6333-R6336 (1997).
  12. G. V. Krivovichev, “Application of the Integro-Interpolation Method to the Construction of Single-Step Lattice Boltzmann Schemes,” Vychisl. Metody Programm. 13, 19-27 (2012).
  13. G. V. Krivovichev and E. A. Prokhorova, “Approximation Viscosity of One-Parameter Families of Lattice Boltzmann Equations,” Vychisl. Metody Programm. 18, 41-52 (2017).
  14. P. R. Rao and L. A. Schaefer, “Numerical Stability of Explicit Off-Lattice Boltzmann Schemes: A Comparative Study,” J. Comput. Phys. 285, 251-264 (2015).
  15. G. V. Krivovichev, “A Lattice Boltzmann Scheme for Computing on Unstructured Meshes,” Vychisl. Metody Programm. 14, 524-532 (2013).
  16. V. Sofonea and R. F. Sekerka, “Viscosity of Finite Difference Lattice Boltzmann Models,” J. Comput. Phys. 184 (2), 422-434 (2003).
  17. V. V. Aristov and F. G. Cheremisin, “The Conservative Splitting Method for Solving Boltzmann’s Equation,” Zh. Vychisl. Mat. Mat. Fiz. 20 (1), 191-207 (1980) [USSR Comput. Math. Math. Phys. 20 (1), 208-225 (1980)].
  18. G. Dimarco and L. Pareschi, “Numerical Methods for Kinetic Equations,” Acta Numerica 23, 369-520 (2014).
  19. V. V. Aristov and S. A. Zabelok, “A Deterministic Method for Solving the Boltzmann Equation with Parallel Computations,” Zh. Vychisl. Mat. Mat. Fiz. 42 (3), 425-437 (2002) [Comput. Math. Math. Phys. 42 (3), 406-418 (2002)].
  20. S. V. Bogomolov, “Accuracy Increasing of the Splitting Method for Boltzmann Equation,” Mat. Model. 11 (10), 100-105 (1999).
  21. G. Dimarco and R. Loubere, “Towards an Ultra Efficient Kinetic Scheme. Part I: Basics on the BGK Equation,” J. Comput. Phys. 255, 680-698 (2013).
  22. S. V. Bogomolov, “Convergence of the Total-Approximation Method for the Boltzmann Equation,” Zh. Vychisl. Mat. Mat. Fiz. 28 (1), 119-126 (1988) [USSR Comput. Math. Math. Phys. 28 (1), 79-84 (1988)].
  23. T. Ohwada, “Higher Order Approximation Methods for the Boltzmann Equation,” J. Comput. Phys. 139 (1), 1-14 (1998).
  24. Yu. A. Anikin, O. I. Dodulad, Yu. Yu. Kloss, et al., “Development of Applied Software for Analysis of Gas Flows in Vacuum Devices,” Vacuum 86 (11), 1770-1777 (2012).
  25. Yu. A. Anikin, O. I. Dodulad, Yu. Yu. Kloss, and F. G. Tcheremissine, “Method of Calculating the Collision Integral and Solution of the Boltzmann Kinetic Equation for Simple Gases, Gas Mixtures and Gases with Rotational Degrees of Freedom,” Int. J. Comput. Math. 92 (9), 1775-1789 (2015).
  26. Yu. Yu. Kloss, P. V. Shuvalov, and F. G. Tcheremissine, “Solving Boltzmann Equation on GPU,” Procedia Comput. Sci. 1 (1), 1083-1091 (2010).
  27. P. J. Dellar, “An Interpretation and Derivation of the Lattice Boltzmann Method Using Strang Splitting,” Comput. Math. Appl. 65 (2), 129-141 (2013).
  28. U. D. Schiller, “A Unified Operator Splitting Approach for Multi-Scale Fluid-Particle Coupling in the Lattice Boltzmann Method,” Comput. Phys. Commun. 185 (10), 2586-2597 (2014).
  29. V. V. Aristov, “The Solution of the Boltzmann Equation at Small Knudsen Numbers,” Zh. Vychisl. Mat. Mat. Fiz. 44 (6), 1127-1140 (2004) [Comput. Math. Math. Phys. 44 (6), 1069-1081 (2004)].
  30. G. V. Krivovichev and E. S. Marnopolskaya, “Study of Properties of a Finite-Difference Scheme for the Advection Stage Implementation in the Lattice Boltzmann Method, Vychisl. Metody Programm. 17, 212-223 (2016).
  31. T. G. Elizarova, Quasi-Gas Dynamic Equations and Methods for the Computation of Viscous Flow (Nauchnyi Mir, Moscow, 2007) [in Russian].
  32. N. N. Kalitkin, Numerical Methods (BKhV Petersburg, St. Petersburg, 2011) [in Russian].
  33. R. P. Fedorenko, Introduction to Computational Physics (Intellekt, Dolgoprudnyi, 2008) [in Russian].
  34. U. Ghia, K. N. Ghia, and C. T. Shin, “High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method,” J. Comput. Phys. 48, 387-411 (1982).
  35. Q. Zou and X. He, “On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK Model,” Phys. Fluids 9 (6), 1591-1598 (1997).
  36. E. Erturk, “Discussions on Driven Cavity Flow,” Int. J. Numer. Methods Fluids 60 (3), 275-294 (2009).

Published

26-06-2017

How to Cite

Кривовичев Г., Марнопольская Е. Analysis and Optimization of Higher Order Explicit Finite-Difference Schemes for the Advection Stage Implementation in the Lattice Boltzmann Method // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2017. 18. 227-246. doi 10.26089/NumMet.v18r321

Issue

Section

Section 1. Numerical methods and applications

Most read articles by the same author(s)

1 2 > >>