An iterative method for solving a 3D electrical impedance tomography problem in the case of piecewise constant conductivity and several measurements on the boundary

Authors

  • S.V. Gavrilov Lomonosov Moscow State University

Keywords:

electrical impedance tomography problem, piecewise constant conductivity, unknown boundary, inverse problem, iterative method

Abstract

The electrical impedance tomography problem is considered in a bounded three-dimensional domain with a piecewise constant electrical conductivity. The inhomogeneity boundary is assumed to be unknown. The inverse problem is to determine the surface that is the inhomogeneity boundary using several known measurements of the potential and its normal derivative on the outer boundary of the domain. An iterative method for solving the inverse problem is proposed. Some numerical results are discussed.

Author Biography

S.V. Gavrilov

References

  1. Borcea L. Electrical impedance tomography // Inverse Problems. 2002. 18. 99-136.
  2. Alessandrini G., Isakov V. Analyticity and uniqueness for the inverse conductivity problem // Rend. Ist. Mat. Univ. Trieste. 1996. 28, N I, II. 351-369.
  3. Barceo B., Fabes E., Seo J.K. The inverse conductivity problem with one measurement: uniqueness for convex polyhedra // Proc. Amer. Math. Soc. 1994. Т. 122-1. 183-189.
  4. Bellout H., Friedman A., Isakov V. Stability for an inverse problem in potential theory // Trans. Amer. Math. Soc. 1992. 332. 271-296.
  5. Astala K., Paivarinta L. Calderon’s inverse conductivity problem in the plane // Ann. Math. 2006. 163. 265-299.
  6. Kang H., Seo J.K. Layer potential technique for the inverse conductivity problem // Inverse Problems. 1996. 12. 267-278.
  7. Bruhl M., Hanke M. Numerical implementation of two noniterative methods for locating inclusions by impedance tomography // Inverse Problems. 2000. 16. 1029-1042.
  8. Bruhl M., Hanke M. Recent progress in electrical impedance tomography // Inverse Problems. 2003. 19. 65-90.
  9. Eckel H., Kress R. Nonlinear integral equations for the inverse electrical impedance problem // Inverse Problems. 2007. 23. 475-491.
  10. Kwon O., Seo J.K., Yoon J.R. A real-time algorithm for the location search of discontinuous conductivities with one measurement // Comm. Pure Appl. Math. 2002. 55, N 1. 1-29.
  11. Kang H., Seo J.K., Sheen D. Numerical identification of discontinuous conductivity coefficients // Inverse Problems. 1997. 13. 113-123.
  12. Денисов А.М., Захаров Е.В., Калинин А.В., Калинин В.В. Численные методы решения некоторых обратных задач электрофизиологии сердца // Дифференц. уравнения. 2009. 45, № 7. 1014-1022.
  13. Гаврилов С.В., Денисов А.М. Численные методы определения границы неоднородности в краевой задаче для уравнения Лапласа в кусочно-однородной среде // Ж. вычисл. матем. и матем. физ. 2011. 51, № 8. 1-14.
  14. Гаврилов С.В., Денисов А.М. Итерационный метод решения трехмерной задачи электроимпедансной томографии в случае кусочно-постоянной проводимости и одного измерения на границе // Ж. вычисл. матем. и матем. физ. 2012. 52, № 8. 1426-1436.

Published

15-01-2013

How to Cite

Гаврилов С. An Iterative Method for Solving a 3D Electrical Impedance Tomography Problem in the Case of Piecewise Constant Conductivity and Several Measurements on the Boundary // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2013. 14. 26-30

Issue

Section

Section 1. Numerical methods and applications