Calculation of excited states of the polycation Bi 3+ 5 by the spin-orbit configuration interaction method

Authors

  • A.N. Romanov Lomonosov Moscow State University
  • O.A. Kondakova Lomonosov Moscow State University https://orcid.org/0000-0002-6316-9992
  • A.V. Sulimov Dimonta
  • V.B. Sulimov Dimonta
  • D.N. Vtyurina Dimonta

Keywords:

elastic waves, block medium, microstructure, rheological scheme, numerical algorithm

Abstract

The polycation Bi 3+5 is one of the possible emitters of the broadband NIR luminescence from optics materials doped by bismuth. The Bi 3+5 lowest excited states are calculated by the spin-orbit configuration interaction method. These excited states are responsible for the optical absorption features in NIR, visible and near UV spectral ranges. The numerical results are in good agreement with the experimental data corresponding to the Bi 3+5 absorption spectrum in chloroaluminate melts. The existence of the lowest excited state with radiative transition to the ground state in NIR is confirmed. Thus, the Bi 3+5 polycation can be a source of the broadband NIR emission in bismuth doped optical materials.

Author Biographies

A.N. Romanov

O.A. Kondakova

A.V. Sulimov

Dimonta, LLC
• System Programmer

V.B. Sulimov

Dimonta, LLC
• Head of Laboratory

D.N. Vtyurina

Dimonta, LLC
• Junior Researcher

References

  1. Fujimoto Y., Nakatsuka M. Optical amplification in bismuth-doped silica glass // Appl. Phys. Lett. 2003. 82, N 19. 3325-3326.
  2. Dianov E.M. Bi-doped glass optical fibers: is it a new breakthrough in laser materials? // J. Non-Cryst. Solids. 2009. 355, № 37-42. 1861-1864.
  3. Arai Y., Suzuki T., Ohishi Y., Morimoto S., Khonthon S. Ultrabroadband near-infrared emission from a colorless bismuth-doped glass // Appl. Phys. Lett. 2007. 90, N 26. 261110.
  4. Meng X., Qiu J., Peng M., Chen D., Zhao Q., Jiang X., Zhu C. Near infrared broadband emission of bismuth-doped aluminophosphate glass // Optics Express. 2005. 13, N 5. 1628-1634.
  5. Romanov A.N., Fattakhova Z.T., Zhigunov D.M., Korcha V.N., Sulimov V.B. On the origin of near-IR luminescence in Bi-doped materials (I). Generation of low-valence Bismuth species by Bi^3+ and Bi_0 synproportionation // Opt. Mater. 2011. 33, N 4. 631-634.
  6. Peng M., Meng X., Qiu J., Zhao Q., Zhu C. GeO2: Bi, M (M = Ga, B) glasses with super-wide infrared luminescence // Chem. Phys. Lett. 2005. 403, № 4-6. 410-414.
  7. Qiu Y., Kang J., Li C., Dong X., Zhao C.-L. Broadband near-infrared luminescence in bismuth borate glasses // Laser Physics. 2010. 20, N 2. 487-492.
  8. Dong G., Xiao X., Ren J., Ruan J., Liu X., Qiu J., Lin C., Tao H., Zhao X. Broadband Infrared Luminescence from Bismuth-Doped GeS-2 -Ga_2S_3 Chalcogenide Glasses // Chinese Physics Letters. 2008. 25, N 5. 1891-1894.
  9. Romanov A.N., Haula E.V., Fattakhova Z.T., Veber A.A., Tsvetkov V.B., Zhigunov D.M., Korchak V.N., Sulimov V.B. Near-IR luminescence from subvalent bismuth species in fluoride glass // Opt. Mater. 2011. 34, N 1. 155-158.
  10. Sun H.-T., Sakka Y., Fujii M., Shirahata N., Gao H. Ultrabroad near-infrared photoluminescence from ionic liquids containing subvalent bismuth // Opt. Lett. 2011. 36, N 2. 100-102.
  11. Sun H.-T., Hosokawa A., Miwa Y., Shimaoka F., Fujii M., Mizuhata M., Hayashi S., Deki S. Strong ultra-broadband near-infrared photoluminescence from Bismuth-embedded zeolites and their derivatives // Adv. Mater. 2009. 21, N 36. 3694-3698.
  12. Sun H.-T., Sakka Y., Miwa Y., Shirahata N., Fujii M., Gao H. Spectroscopic characterization of bismuth embedded Y zeolites // Appl. Phys. Lett. 2010. 97, N 13. 131908.
  13. Okhrimchuk A.G., Butvina L.N., Dianov E.M., Lichkova N.V., Zagorodnev V.N., Boldyrev K.N. Near-infrared luminescence of RbPb_2Cl_5:Bi crystals // Opt. Lett. 2008. 33, N 19. 2182-2184.
  14. Su L., Yu J., Zhou P., Li H., Zheng L., Yang Y., Wu F., Xia H., Xu J. Broadband near-infrared luminescence in gamma-irradiated Bi-doped alpha-BaB_2O_4 single crystals // Opt. Lett. 2009. 34, N 16. 2504-2506.
  15. Ruan J., Su L., Qiu J., Chen D., Xu J. Bi-doped BaF2 crystal for broadband near-infrared light source // Optics Express. 2009. 17, N 7. 5163-5169.
  16. Peng M., Sprenger B., Schmidt M.A., Schwefel H.G. L., Wondraczek L. Broadband NIR photoluminescence from Bi-doped Ba_2P_2O_7 crystals: insights into the nature of NIR-emitting bismuth centers // Optics Express. 2010. 18, N 12. 12852-12863.
  17. Sun H.-T., Sakka Y., Gao H., Miwa Y., Fujii M., Shirahata N., Bai Z., Li J.-G. Ultrabroad near-infrared photoluminescence from Bi_5(AlCl_4)_3 crystal // J. Mater. Chem. 2011. 21, N 12. 4060-4063.
  18. Romanov A., Fattakhova Z., Zhigunov D., Buchnev L., Korchak V., Sulimov V. IR luminescence from subvalent bismuth in phosphate glass and glass ceramic matrices: a new insight into the nature of luminescent Bi species // Online Digest of the 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO extregistered/Europe - EQEC 2011). 22-26 May 2011, Munich, Germany.
  19. Bjerrum N.J, Boston C.R., Smith G.P. Lower oxidation states of bismuth. Bi^+ and Bii in molten salt solution // Inorg. Chem. 1967. 6, N 6. 1162-1172.
  20. Bjerrum N.J., Boston C.R., Smith G.P. Lower oxidation states of bismuth. Bi_8^2+ formed in aluminum chloride-sodium chloride melts // Inorg. Chem. 1967. 6, N 11. 1968-1972.
  21. Hershaft A., Corbett J.D. The crystal structure of Bismuth subchloride. Identification of the ion Bi_9^5+ // Inorg. Chem. 1963. 2, N 5. 979-985.
  22. Kalpen H., Hddotonle W., Somer M., Schwarz U., Peters K., von Schnering H.G., Blachnik R. Bismut(II)-chalkogenometallate(III) Bi_2M_4X_8, Verbindungen mit Bi_2^4+-Hanteln (M=Al, Ga; X=S,Se) // Z. Anorg. Allg. Chem. 1998. 624, N 7. 1137-1147.
  23. Dikarev E.V., Li B. Rational syntheses, structure, and properties of the first Bismuth(II) carboxylate // Inorg. Chem. 2004. 43, N 11. 3461-3466.
  24. Corbett J.D., Albers F.C., Sallach R.A. An electromotive force study of solutions of bismuth in bismuth(III) chloride at 240^circ // Inorg. Chimica Acta. 1968. 2. 22-26.
  25. Ruck M. Bi_34Ir_3Br_37: Ein pseudosymmetrisches Subbromid aus Bi_5^+- und Bi_6^2+- Polykationen sowie [IrBi_6Br_12]^- und [IrBi_6Br_13]^2- Clusteranionen // Z. Anorg. Allgem. Chem. 1998. 624, N 3. 521-528.
  26. Peng M., Da N., Krolikowski S., Stiegelschmitt A., Wondraczek L. Luminescence from Bi^2+-activated alkali earth borophosphates for white LEDs // Optics Express. 2009. 17, N 23. 21169-21178.
  27. Ulvenlund S., Bengtsson-Kloo L., Stddotahl K. Formation of subvalent bismuth cations in molten gallium trichloride and benzene solutions // J. Chem. Soc. Faraday Trans. 1995. 91, N 23. 4223-4234.
  28. Sokolov V.O., Plotnichenko V.G., Dianov E.M. Possible centers of broadband near-IR luminescence in bismuth-doped solids: Bi^+, Bii, and Bi_4 (arXiv:1106.1519v1 [cond-mat.mtrl-sci] 8 Jun 2011).
  29. Werner H.-J., Knowles P.J., Lindh R., Manby F.R., Schutz M., Celani P., Korona T., Rauhut G., Amos R.D., Bernhardsson A., Berning A., Cooper D.L., Deegan M.J. O., Dobbyn A.J., Eckert F., Hampel C., Hetzer G., Lloyd A.W., McNicholas S.J., Meyer W., Mura M.E., Nicklass A., Palmieri P., Pitzer R., Schumann U., Stoll H., Stone A.J., Tarroni R., Thorsteinsson T. MOLPRO, version 2006.1. A package of ab initio programs (available atlinebreak http://www.molpro.net).
  30. Metz B., Stoll H., Dolg M. Small-core multiconfiguration-Dirac-Hartree-Fock-adjusted pseudopotentials for post-d main group elements: application to PbH and PbO // J. Chem. Phys. 2000. 113, N 7. 2563-2569.
  31. Peterson K.A. Systematically convergent basis sets with relativistic pseudopotentials. I. Correlation consistent basis sets for the post-d group 13-15 elements // J. Chem. Phys. 2003. 119, N 21. 11099-11112.
  32. Ichikawa K., Yamanaka T., Takamuku A., Glaser R. Neutron Diffraction of Homopolyatomic Bismuth ions in liquid Bi_5(AlCl_4)_3 and ab initio study of the structure and bonding of the isolated Bii ion // Inorg. Chem. 1997. 36, N 3. 5284-5290.
  33. Романов А.Н., Кондакова О.А., Головачева А.Ю., Сулимов А.В., Офёркин И.В., Сулимов В.Б. Квантово-химическое моделирование возбужденных состояний монокатиона висмута // Вычислительные методы и программирование. 2011. 12, N 2. 417-422 (https://num-meth.rcc.msu.ru/).
  34. Knowles P.J., Werner H.-J. Internally contracted multiconfiguration-reference configuration interaction calculations for excited states // Theor. Chimica Acta. 1992. 84, N 1-2. 95-103.
  35. Титов А.В. Обобщенный релятивистский эффективный потенциал и восстановление электронной структуры в остовах тяжелых атомов в молекулах: Дисс. …. СПб.: 2002.
  36. Burns R.C., Gillespie R.J., Luk W.-C. The preparation, spectroscopic properties, and structure of the pentabismuth(3+) cation, Bii // Inorg. Chem. 1978. 17, N 12. 3596-3604.

Published

11-11-2011

How to Cite

Романов А., Кондакова О., Сулимов А., Сулимов В., Втюрина Д. Calculation of Excited States of the Polycation Bi 3+ 5 by the Spin-Orbit Configuration Interaction Method // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2011. 12. 443-449

Issue

Section

Section 1. Numerical methods and applications

Most read articles by the same author(s)

1 2 3 > >>