Solving the Boltzmann equation on GPU

Authors

  • Yu.Yu. Kloss National Research Center «Kurchatov Institute»
  • F.G. Tcheremissine Dorodnicyn Computing Centre of RAS
  • P.V. Shuvalov Moscow Institute of Physics and Technology

Keywords:

GPU, CUDA, massively-parallel computation, Boltzmann equation, rarefied gas

Abstract

The paper describes an implementation of the conservative projection method for solving the Boltzmann equation on GPU. The NVidia CUDA technology is used as a computational platform. Methods for an optimal implementation of a solver for two-dimensional geometry and methods for setting boundary conditions, implementation of the geometry, and storage of integrating grids are developed. The developed approach is used to perform computations for the problem of slow gas flow in a rectangular cavity and the problem of shock wave propagation in a narrow channel. The efficiency of using GPU for the analysis of slow and high-speed flows of rarefied gas is shown.

Author Biographies

Yu.Yu. Kloss

National Research Center «Kurchatov Institute»
• Associate Professor, Head of Department

F.G. Tcheremissine

Dorodnicyn Computing Centre of RAS
• Professor, Chief Researcher

P.V. Shuvalov

References

  1. Bhatnagar P.L., Gross E.P., Krook M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems // Phys. Rev. 1954. 94. 211-225.
  2. Bird G.A. Molecular gas dynamics and the direct simulation of gas flows. Oxford: Clarendon Press, 1994.
  3. Черемисин Ф.Г. Консервативный метод вычисления интеграла столкновений Больцмана // Докл. РАН. 1997. 357, № 1. 53-56.
  4. Tcheremissine F.G. Direct numerical solution of the Boltzmann equation // Proc. 24-th Intern. Symp. in Rarefied Gas Dynamics. New York: AIP Conf. Proc. 2005. 667-685.
  5. Черемисин Ф.Г. Решение кинетического уравнения Больцмана для высокоскоростных течений // Журн. вычисл. матем. и матем. физики. 2006. 46, № 2. 329-343.
  6. Tcheremissine F.G. Solution of the Boltzmann kinetic equation for low speed flows // Transport Theory and Statistical Physics. 2008. 37, N 5. 564-575.
  7. Anderson J.A., Lorenz C.D., Travesset A. General purpose molecular dynamics simulations fully implemented on graphics processing units // J. Comput. Phys. 2008. 227, N 10. 5342-5359.
  8. Molnacute a r F.Jr., Szakacute a ly T., Macute e szacute a ros R., Lagzi I. Air pollution modelling using a graphics processing unit with CUDA // Computer Physics Communications. 2010. 180, N 12. 105-112.
  9. Brandvik T., Pullan G. Acceleration of a 3D Euler solver using commodity graphics hardware // 46th AIAA Aerospace Sciences Meeting and Exhibit. Reno (Nevada, USA), 2008.
  10. Frezzotti A., Ghiroldi G.P., Gibelli L. Solving kinetic equations on GPUs. I: Model kinetic equations. 2009. // arXiv:0903.4044v1 [physics.comp-ph].
  11. Corrigan A., Camelli F., Lddot o hner R., Wallin J. Running unstructured grid CFD solvers on modern graphics hardware // 19th AIAA Computational Fluid Dynamics Conference. No. AIAA 2009-4001, 2009.
  12. Коробов Н.М. Тригонометрические суммы и их приложения. М.: Наука, 1989.
  13. NVIDIA Corporation, NVIDIA CUDA Programming Guide, Version 2.3.1. 2009. // URL: http://www.nvidia.com/object/cuda_develop.html.
  14. Клосс Ю.Ю., Черемисин Ф.Г., Хохлов Н.И., Шурыгин Б.А. Программно-моделирующая среда для исследования течей газа в микро- и наноструктурах на основе решения уравнения Больцмана // Атомная энергия. 2008. 105, № 4. 211-217.
  15. Valougeorgis D., Vauritis S., Sharipov F. Application of the integro-moment method to steady-state two-dimensional rerafeied gas flows subject to boundary induced discontinuities // J. Comput. Phys. 2008. 227. 6272-6287.
  16. Naris S., Valougeorgis D. The driven cavity flow over the whole range of the Knudsen number // Phys. Fluids. 2005. 17, N 9. 907106.1-907106.12.
  17. Khokhlov N.I., Kloss Yu.Yu., Shurygin B.A., Tcheremissine F.G. Simulation of the temperature driven micro pump by solving the Boltzmann equation // 26-th Int. Symp. on Rarefied Gas Dynamics. Books of abstract. Kyoto: Kyoto Univ. Press, 2008.
  18. Khokhlov N.I., Kloss Yu.Yu., Shurygin B.A., Tcheremissine F.G. Application of MPI-technology for solving the Boltzmann equation // 20-th Int. Conf. on Transport Theory. Book of Abstracts. Obninsk, 2007. 189.
  19. Клосс Ю.Ю., Черемисин Ф.Г., Шувалов П.В. Решение уравнения Больцмана для нестационарных течений с ударными волнами в узких каналах // Журн. вычисл. матем. и матем. физики. 2010. 50, № 6. 1-15.

Published

08-04-2010

How to Cite

Клосс Ю., Черемисин Ф., Шувалов П. Solving the Boltzmann Equation on GPU // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2010. 11. 144-152

Issue

Section

Section 1. Numerical methods and applications