A parallel algorithm of the finite-volume method for solving 3D Maxwell equations in nanocomposite media

Authors

  • L.Yu. Prokopeva Institute of Computational Technologies of SB RAS (ICT SB RAS) https://orcid.org/0000-0003-4967-7461
  • M.P. Fedoruk Institute of Computational Technologies of SB RAS (ICT SB RAS)
  • A.S. Lebedev Institute of Computational Technologies of SB RAS (ICT SB RAS)

Keywords:

Maxwell equations, mathematical modeling, finite-volume method, parallel algorithms, metamaterials

Abstract

An efficient parallel algorithm of the finite-volume method is proposed for the three-dimensional modeling of electromagnetic phenomena in metamaterials (artificial nanostructured media). The algorithm is parallelized for a high-performance computing environment using the domain decomposition approach and is modified for an accurate modeling of complex nanocomposite media, such as most of metamaterials are. These techniques are illustrated by numerical modeling of a hyperlens (a strongly anisotropic metamaterial device that allows one to overcome the diffraction limit of conventional optical imaging).

Author Biographies

L.Yu. Prokopeva

M.P. Fedoruk

A.S. Lebedev

References

  1. Веселаго В.Г. Электродинамика веществ с одновременно отрицательными значениями varepsilon и mu // Успехи физ. наук. 1967. 92, № 3. 517-526.
  2. Pendry J.B. Negative refraction makes a perfect lens // Phys. Rev. Lett. 2000. 85, N 18. 3966-3969.
  3. Smith D.R., Padilla W.J., Vier D.C., et al. Composite medium with simultaneously negative permeability and permittivity // Phys. Rev. Lett. 2000. 84, N 18. 4184-4187.
  4. Shelby R.A., Smith D.R., Schultz S. Experimental verification of a negative index of refraction // Science. 2001. 292. 77-79.
  5. Parazzoli C.G., Greegor R.B., Nielsen J.A. Performance of a negative index of refraction lens // Appl. Phys. Lett. 2004. 84, N 17. 3232-3234.
  6. Shalaev V.M., Cai W., Chettiar U.K., Yuan H.-K., Sarychev A.K., Drachev V.P., Kildishev A.V. Negative index of refraction in optical metamaterials // Opt. Lett. 2005. 30. 3356-3358.
  7. Zhang S., Fan W., Panoiu N.C., et al. Experimental demonstration of near-infrared negative-index metamaterials // Phys. Rev. Lett. 2005. 95. Id. 137404.
  8. Kildishev A.V., Cai W., Chettiar U.K., Yuan H.-K., Sarychev A.K., Drachev V.P., Shalaev V.M. Negative refractive index in optics of metal-dielectric composites // J. Opt. Soc. Am. B. 2006. 23. 423-433.
  9. Zhang S., Fan W., Malloy K.J., Brueck S.R. J., Panoiu N.C., and Osgood R.M. // Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies // J. Opt. Soc. Am. B. 2006. 23. 434-438.
  10. Jacob Z., Alekseyev L.V., Narimanov E. Optical hyperlens: far-field imaging beyond the diffraction limit // Opt. Express. 2006. 14. 8247-8256.
  11. Salandrino A., Engheta N. Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations // Phys. Rev. B. 2006. 74. Id. 075103.
  12. Liu Z., Lee H., Xiong Y., Sun C., Zhang X. Optical hyperlens magnifying sub-diffraction-limited objects // Science. 2007. 315. 1686.
  13. Smolyaninov I., Hung Y., Davis C. Magnifying superlens in the visible frequency range // Science. 2007. 315. 5819.
  14. Kildishev A.V., Narimanov E.E. Impedance-matched hyperlens // Opt. Lett. 2007. 32, N 23. 3432-3434.
  15. Greenleaf A., Lassas M., and Uhlmann G. Anisotropic conductivities that cannot be detected by EIT // Physiol. Meas. 2003. 24. 413-419.
  16. Pendry J.B., Schurig D., Smith D.R. Controlling electromagnetic fields // Science. 2006. 312. 1780.
  17. Schurig D., Mock J.J., Justice B.J., Cummer S.A., Pendry J.B., Starr A.F., Smith D.R. Metamaterial electromagnetic cloak at microwave frequencies // Science. 2006. 314. 977-980.
  18. Zhang B., Chen H., Wu B.-I., Luo Y., Ran L., Kong J.A. Response of a cylindrical invisibility cloak to electromagnetic waves // Phys. Rev. B. 2007. 76. Id. 121101.
  19. Cai W., Chettiar U.K., Kildishev A.V., Shalaev V.M. Optical cloaking with metamaterials // Nat. Photonics. 2007. 1. 224-227.
  20. Cai W., Chettiar U.K., Kildishev A.V., Shalaev V.M. Designs for optical cloaking with high-order transformations // Optics Express. 2008. 16. 5444-5452.
  21. Лебедев А.С., Федорук М.П., Штырина О.В. Конечно-объемный алгоритм решения нестационарных уравнений Максвелла на неструктурированной сетке // Журн. вычисл. матем. и матем. физики. 2006. 47, № 7. 1286-1301.
  22. Прокопьева Л.Ю., Шокин Ю.И., Лебедев А.С., Федорук М.П. Параллельная реализация метода конечных объемов для решения нестационарных уравнений Максвелла на неструктурированной сетке // Вычисл. технологии. 2007. 12. Спецвыпуск 4. 59-69.

Published

25-12-2008

How to Cite

Прокопьева Л., Федорук М., Лебедев А. A Parallel Algorithm of the Finite-Volume Method for Solving 3D Maxwell Equations in Nanocomposite Media // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2008. 10. 28-33

Issue

Section

Section 1. Numerical methods and applications